一次函数教案(一次函数优秀教案)

一次函数教案

一次函数的图像教案怎么列表

  • 完整问题:
  • 好评回答:分二行,第一行写x,第二行写y,除xy共处一列外,最好再起三列,写上图像中的点
  • 寻求初二数学第六章《一次函数的图象》这节教案 急!急!急!

  • 完整问题:我现在急需《一次函数的图象》这节教案,第一次试讲课不知道该怎么准备,所以想参考一下!
  • 好评回答:去千教网找阿,上边大把网址是: 初中每个年级每个章节的教案都有,免费的在”免费课件教案试题网”那一栏找
  • 一次函数怎么解?

  • 完整问题:一次函数快解
  • 好评回答:你好!一次函数解法通常的解法是题目告知两个坐标设:(X1,Y1)(X2,Y2) 设函数为Y=KX+B 分别将以上两个坐标带入截2元一次方程一次函数相关知识如下:I、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b(k,b为常数,k≠0) 则称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 II、一次函数的性质: y的变化值与对应的x的变化值成正比例,比值为k 即 △y/△x=k III、一次函数的图象及性质: 1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。 2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 3. k,b与函数图象所在象限。 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 IV、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程: y1=kx1+b① 和 y2=kx2+b②。 (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 V、一次函数在生活中的应用 1。当时间t一定,距离s是速度v的一次函数。s=vt。 2。当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。希望以上能对你有所帮助。。
  • 怎样学好一次函数

  • 完整问题:怎样学好一次函数
  • 好评回答:解一次函数,首先要知道一次函数在图象中是两个点确定的一条直线,要知道它的解析式是Y=KX+B,其中B不能为零(为零的话就是正比例函数了),k是直线在Y轴上的截距,解决一次函数的关键是解决K和B的问题,所以要充分利用题目中的条件,找到两个坐标点,并列关于K和B的二元一次方程组,从而求得一次函数的解析式。要注意一次函数和正比例函数的关系,也就是正比例函数是一次函数的特例,也就是正比例函数在Y轴的截距为零,解正比例函数只需要一个坐标,解决K问题即可。另外,要注意训练一下有关与一次函数相结合的实际应用的问题,因为这部分在考题当中还是经常出现的,应加强这方面的训练。另外上课要认真听讲,不要太着急,慢慢学,加油!!!
  • 一次函数怎么解?

  • 完整问题:一次函数快解
  • 好评回答:你好!一次函数解法通常的解法是题目告知两个坐标设:(X1,Y1)(X2,Y2) 设函数为Y=KX+B 分别将以上两个坐标带入截2元一次方程一次函数相关知识如下:I、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b(k,b为常数,k≠0) 则称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 II、一次函数的性质: y的变化值与对应的x的变化值成正比例,比值为k 即 △y/△x=k III、一次函数的图象及性质: 1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。 2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 3. k,b与函数图象所在象限。 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 IV、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程: y1=kx1+b① 和 y2=kx2+b②。 (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 V、一次函数在生活中的应用 1。当时间t一定,距离s是速度v的一次函数。s=vt。 2。当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。希望以上能对你有所帮助。。
  • 一次函数怎么解?

  • 完整问题:一次函数快解
  • 好评回答:你好!一次函数解法通常的解法是题目告知两个坐标设:(X1,Y1)(X2,Y2) 设函数为Y=KX+B 分别将以上两个坐标带入截2元一次方程一次函数相关知识如下:I、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b(k,b为常数,k≠0) 则称y是x的一次函数。 特别地,当b=0时,y是x的正比例函数。 II、一次函数的性质: y的变化值与对应的x的变化值成正比例,比值为k 即 △y/△x=k III、一次函数的图象及性质: 1. 作法与图形:通过如下3个步骤(1)列表;(2)描点;(3)连线,可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。 2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。 3. k,b与函数图象所在象限。 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。 特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 IV、确定一次函数的表达式: 已知点A(x1,y1);B(x2,y2),请确定过点A、B的一次函数的表达式。 (1)设一次函数的表达式(也叫解析式)为y=kx+b。 (2)因为在一次函数上的任意一点P(x,y),都满足等式y=kx+b。所以可以列出2个方程: y1=kx1+b① 和 y2=kx2+b②。 (3)解这个二元一次方程,得到k,b的值。 (4)最后得到一次函数的表达式。 V、一次函数在生活中的应用 1。当时间t一定,距离s是速度v的一次函数。s=vt。 2。当水池抽水速度f一定,水池中水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。希望以上能对你有所帮助。。
  • 版权声明