拉马努金最著名的公式?
印度天才数学家拉马努金在他的论文里发表的一系列共14条圆周率的计算公式。
拉马努金公式
公式:1/π=(1/8)Σ(∞,i=0)(20i+3)(4i)!(-1)^i/(4√2)^4i(i!)?。
拉马努金的哪个公式是用于黑洞行为的?
拉马努金黑洞公式: 拉马努金猜测,在输入特殊值时,也许能这样描述模θ函数:它和模形式毫不相像,但特性类似,这种特殊值称为奇点,靠近这些点时,函数值趋向无穷大。
如函数f(x)=1/x,它有一个奇点x=0。随着x无限接近0,函数值f(x)渐增至无穷大。
拉马努金相信,对于每一个这样的函数,存在一个模θ函数使得它们不仅奇点相同,奇点的函数值也以几乎同样的速率趋近于无穷。而黑洞的中心其实就是一个奇点。在这个奇点上,史瓦西半径几乎为0,时空曲率和物质密度都趋于无穷大,时空流形达到尽头,引力弯曲成了一个“陷阱”,成了一个无限吞灭物质的无底洞。
拉马努金公式是怎么来的?
拉马努金公式怎么来印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。
1985年
Gosper用这个公式计算到了圆周率的17,500,000位。
1989年
大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。1994年丘德诺夫斯基兄弟利用这个公式计算到了4,044,000,000位。
圆周率六种计算方法?
有多种方法:1、马青公式
π=16arctan1/5-4arctan1/239
这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以,可以很容易地在计算机上编程实现。
2、拉马努金公式
1914年,印度数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。
3、高斯-勒让德公式:
这个公式每迭代一次将得到双倍的十进制精度,比如要计算100万位,迭代20次就够了。1999年9月,日本的高桥大介和金田康正用这个算法计算到了圆周率的206,158,430,000位,创出新的世界纪录。
4、波尔文四次迭代式:
这个公式由乔纳森·波尔文和彼得·波尔文于1985年发表,它四次收敛于圆周率。
5、bailey-borwein-plouffe算法
这个公式简称BBP公式,由David Bailey, Peter Borwein和Simon Plouffe于1995年共同发表。它打破了传统的圆周率的算法,可以计算圆周率的任意第n位,而不用计算前面的n-1位。这为圆周率的分布式计算提供了可行性。1997年,白劳德找到了一个比BBP快40%的公式:
拉马努金整数拆分公式推导?
公式是:1/π=(1/8)Σ(∞,i=0)(20i+3)(4i)!(-1)^i/(4√2)^4i(i!)?。拉马努金圆周率公式是印度天才数学家拉马努金在他的论文里发表的一系列共14条圆周率的计算公式。
拉马努金公式有多少是错的?
拉马努金公式有错误的,拉马努金公式是圆周率计算公式,拉马努金在1914年提出。
拉马努金一生大概写了3900个公式,最著名和神奇的就是圆周率公式了,有很多没有被证明。
其中有1000个左右在他发明前已经被发明了,其中有好几个在他之前已经有更精确的公式。比如某人现在写个东西说我发明了微积分,谁知道是你独立发明的还是抄莱布尼茨的?
因此这1000个属于再发明,毫无意义。还有很多是重复发明,比如π的公式他发明十几个。
拉马努金的公式有那些?
拉马努金黑洞公式:
拉马努金猜测,在输入特殊值时,也许能这样描述模θ函数:它和模形式毫不相像,但特性类似,这种特殊值称为奇点,靠近这些点时,函数值趋向无穷大。如函数f(x)=1/x,它有一个奇点x=0。随着x无限接近0,函数值f(x)渐增至无穷大。
拉马努金相信,对于每一个这样的函数,存在一个模θ函数使得它们不仅奇点相同,奇点的函数值也以几乎同样的速率趋近于无穷。而黑洞的中心其实就是一个奇点。在这个奇点上,史瓦西半径几乎为0,时空曲率和物质密度都趋于无穷大,时空流形达到尽头,引力弯曲成了一个“陷阱”,成了一个无限吞灭物质的无底洞。