拉马努金恒等式是谁发明的?
是以印度现代数学家斯里尼瓦瑟·拉马努金的名字命名的一个数学公式。
拉马努金公式被证明的有多少?
拉马努金一生大概写了3900个公式,最著名和神奇的就是圆周率公式了,有很多没有被证明。
其中有1000个左右在他发明前已经被发明了,其中有好几个在他之前已经有更精确的公式。比如某人现在写个东西说我发明了微积分,谁知道是你独立发明的还是抄莱布尼茨的?
圆周率的拉马努金公式?
1、公式:1/π=(1/8)Σ(∞,i=0)(20i+3)(4i)!(-1)^i/(4√2)^4i(i!)?。
2、发展历程:1914年印度天才数学家拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。
3、1989年大卫·丘德诺夫斯基和格雷高里·丘德诺夫斯基兄弟将拉马努金公式改良,这个公式被称为丘德诺夫斯基公式,每计算一项可以得到15位的十进制精度。1994年丘德诺夫斯基兄弟利用这个公式计算到了4,044,000,000位。
楚德诺夫斯基公式推导?
楚德诺夫斯基算法是一种计算π的快速方法。楚德诺夫斯基兄弟使用它计算超过十亿位数字。
该算法基于以下快速收敛的超几何级数:
=” FRAC{1}{pi} = 12 sum^infty_{k=0} frac{(-1)^k (6k)! (13591409 + 545140134k)}{(3k)!(k!)^3 640320^{3k + 3/2}}.!”
这个恒等式与拉马努金的某些涉及π的公式非常相似。
拉马努金定理?
定理是数学家拉马努金在他的论文里发表的一系列共14条圆周率的计算公式。
1914年,印度天才数学家斯里尼瓦瑟·拉马努金在他的论文里发表了一系列共14条圆周率的计算公式。
这个公式每计算一项可以得到8位的十进制精度。
1985年,Gosper用这个公式计算到了圆周率的17,500,000位。
拉马努金的数学算是什么水平的?
印度现代数学家。1887年12月22日生于印度南方坦焦尔区的埃罗德,1920年4月26日卒于马德拉斯附近。幼年时即显示出数学才能,家境贫困,1904年获奖学金入贡伯戈讷姆学院,潜心研习数学。1拉马努金恒等式是以他名字而命名的一个数学公式。