快速傅里叶变换是什么学科(快速傅里叶变换是什么意思)

快速傅里叶变换是什么?

FFT(Fast Fourier Transformation),即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。

它对傅氏变换的理论并没有新的 发现,但是对于在计算机系统或者说数字系统中应用离散傅立叶变换,可以说是进了一大步。

在FFT中,利用WN的周期性和对称性,把一个N项序列(设N=2k,k为正整数),分为两个N/2项的子序列,每个N/2点DFT变换需要(N/2)2次运算,再用N次运算把两个N/2点的DFT变换组合成一个N点的DFT变换。

这样变换以后,总的运算次数就变成N+2*(N/2)^2=N+N^2/2。

FFT提高了运算速度,但是,也对参与运算的样本序列作出了限制,即要求样本数为2^N点。离散傅里叶变换DFT则无上述限制。小结:FFT快,DFT灵活,各有优点,如果满足分析要求,两者准确度相同。

傅里叶变换公式详解?

连续傅里叶变换 一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。

这是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。

连续傅里叶变换的逆变换 (inverse Fourier transform) 为 即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。

一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。

除此之外,还有其它型式的变换对,以下两种型式亦常被使用。在通信或是信号处理方面,常以 来代换,而形成新的变换对 。

或者是因系数重分配而得到新的变换对: 一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。

当f(t)为偶函数(或奇函数)时,其正弦(或余弦)分量将消亡,而可以称这时的变换为余弦变换(cosine transform) 正弦变换(sine transform). 另一个值得注意的性质是,当f(t) 为纯实函数时,F(?ω) = F * (ω) 成立.

用excel如何作快速傅里叶变换?

可以。试了一下,不知道对不对。

1.将数据中心化2.对中心化后的数据进行傅里叶变换3.对傅里叶变换后的数据共轭:IMCONJUGATE4.求功率密度分布IMPRODUCT函数求共轭复数乘积,再除以数据区间长度,这里我的数据是1024个5.横坐标频率,纵坐标密度,插入图表插入散点图。插入时选频率和密度两列的数据。

傅里叶逆变换定义式?

傅里叶变换属于谐波分析。 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;。

正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 离散形式的傅立叶变换可以利用数字计算机快速地算出(其算法称为快速傅里叶变换算法(FFT))。

origin8.0快速傅里叶变换方法?

1、导入数据

2、如图,选中数据——Analysis——Singal Processing——FFT——FFT

3、在如图选框中,直接采用默认设置,点击OK

4、如图为FFT变换结果,我们关注的是频率和幅值两列

5、如图,从0开始的频率及幅值才有意义

6、将从0开始的频率及幅值复制粘贴到新建的Book内,选中数据,进行线图展示

7、Over,这样快速傅里叶变换就可以得到频谱图了

快速傅里叶变换公式?

1、傅里叶变换公式 公式描述:公式中F(ω)为f(t)的像函数,f(t)为F(ω)的像原函数。

2、傅立叶变换,表示能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅立叶变换具有多种不同的变体形式,如连续傅立叶变换和离散傅立叶变换。最初傅立叶分析是作为热过程的解析分析的工具被提出的。

快速傅里叶变换的特点?

傅里叶变换的基本思想首先由法国学者傅里叶系统提出,所以以其名字来命名以示纪念。

从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。

傅立叶变换属于调和分析的内容。”分析”二字,可以解释为深入的研究。从字面上来看,”分析”二字,实际就是”条分缕析”而已。它通过对函数的”条分缕析”来达到对复杂函数的深入理解和研究。从哲学上看,”分析主义”和”还原主义”,就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。”任意”的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇:

1. 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;

2. 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;

3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;

4. 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;

5. 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT)).

正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。

版权声明