什么是七桥问题?
答案是无解的,你要记住,七桥问题即:能否笔不离纸,不重复地一笔画完整个图形。“一笔画”问题,数学分析:一笔画有起点和终点,起点和终点重合的图形称为封闭图形,否则便称为开放图形。
除起点和终点外,一笔画中间可能出现一些曲线的交点。只有当笔沿着一条弧线到达交点后,又能沿着另一条弧线离开,也就是交汇于这些点的弧线成双成对时,一笔画才能完成,这样的交点就称为“偶点”。
如果交汇于这些点的弧线不是成双成对,也就是有奇数条,则一笔画就不能实现,这样的点又叫做“奇点”
结论:若是一个一笔画图形,要么只有两个奇点,也就是仅有起点和终点,这样一笔画成的图形是开放的;要么没有奇点,也就是终点和起点连接起来,这样一笔画成的图形是封闭的。由于七桥问题有四个奇点,所以要找到一条经过七座桥,但每座桥只走一次的路线是不可能的。
延伸阅读
七桥问题:能不能一笔画完?
不能,七桥所成之图形中,没有一点含有偶数条数,因此上述的任务无法完成。
连通图可以一笔画的充要条件是:奇点的数目不是0 个就是2 个(连到一点的数目如是奇数条,就称为奇点,如果是偶数条就称为偶点,要想一笔画成,必须中间点均是偶点,也就是有来路必有另一条去路,奇点只可能在两端,因此任何图能一笔画成,奇点要么没有要么在两端)
七桥问题的答案?
18世纪,在哥尼斯堡城风景秀美的普莱格尔河上有7座别致的拱桥,将河中的两个岛和河岸连结(如下图)。
城中的居民经常沿河过桥散步。城中有位青年很聪明,爱思考,有一天,这位青年给大家提出了这样一个问题:能否一次走遍7座桥,而每座桥只许通过一次,最后仍回到起始地点。这就是举世闻名的七桥问题,当时的人们始终没有能找到答案。
大数学家欧拉从朋友那里听到这个问题,很快便证明了这样的走法不存在。欧拉是这样解决问题的:把图中被河隔开的陆地看成A、B、C、D4个点,7座桥表示成7条连接这4个点的线,思考过程如下图:
伟大的数学家欧拉,睿智地把这样一个实际问题抽象成了一个由点线组成的简单的几何图形,把要解决的问题转化成图(二)的一笔画问题了。这样一个抽象化的过程是欧拉解决这个问题时最精彩的思考,也是最值得我们学习的地方。因为图(二)不能一笔画成,所以人们不能一次走遍7座桥。1736年,欧拉把这题的结果发表在圣彼得堡科学院学报上,欧拉对“七桥问题”的研究是图论研究的开始,可以说,正是这个问题的研究使其成为“图论”的鼻祖。
那么欧拉是如何判断图(二)不可以一笔画成呢?为了便于大家看懂,结合这个例子,我用自己的语言来说明一下一笔画问题的解题思路:这个图形中共有4个点7条线,每个点都是若干条路线的公共端点。如果一个点是偶数条线的公共端点,我们称这个点为双数点(或偶点);如果一个点是奇数条线的公共端点,我们称这个点为单数点(或奇点)。图(二)中A点是5条线的公共端点,B、C、D点都是3条线的公共端点,因此图(二)有4个奇点。一般,我们把起笔的点称为起点,停笔的点称为终点,其它的点称为路过点。显然一笔画图形中所有路过点如果有进去的线就必须有出来的线,从而每个点连接的线数必须有偶数个才能完成一笔画,如果路过点中出现奇点,必然就会出现没有走过的路线或重复路线。因此在一笔画图形中,只有起点和终点可以是奇点(起点可以只出不进,终点可以最后进这个点就不出了),也就是说最多只能有两个奇点,以一个奇点为起点,另一个奇点为终点。因为图(二)有4个奇点,因此图(二)不能一笔画成。
另外两点说明:
一、一笔画图形中所有的线必须是连续的,因为笔不离纸,如果一个图形由两个断开的部分组成,肯定不能一笔画。例如“国”这个字就不能一笔写出来。
二、一笔画图形中的奇点都是成对出现的(因为每条线都有两个端点,所有线的端点和是偶数),图形中没有奇点,都是偶点时,可以一笔画成,但起点和终点必须选择同一点。
结合以上说明,解决一笔画问题,第一步是找出图中所有点,判断其是奇点还是偶点;第二步是根据奇点的个数作出正确的判断;第三步是让孩子用铅笔试着画一画,验证自己的判断。
数学名题之哥尼斯堡七桥问题?
如果每座桥只能走一次,那么除了起点以外,当一个人由一座桥走到一块陆地时,这个人必须从另外一座桥离开这块陆地。那么对每块陆地来说,有一座进入的桥就应该对应一座离开的桥。那么在每一块陆地连接的桥数应该为偶数。但七桥连出来是奇数,所以一个人不能一次走完七座桥。欧拉终于证明了他的结论。