什么是几何图形小学 什么是几何图形的意义

什么是几何图形?

1.点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric figure)。

从实物中抽象出的各种图形统称为几何图形。有些几何图形的各部分不在同一平面内,叫做立体图形(solid figure)。有些几何图形的各部分都在同一平面内,叫做平面图形(Plane figure)。虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。几何图形一般分为立体图形和平面图形2· 几何体的概念:几何体简称体,像正方体、球体、棱椎体等都是几何体。包围着体的是面,面有平面和曲面两种,面与面相交的地方形成线,线与线相交的地方叫做点。3.用运动的观点来理解点,线,面,体。点动成线,线动成面,面动成体。延伸阅读

几何图形包括哪些东西组成?

1.圆形(包括正圆,椭圆)

2.多边形:三角形(分为一般三角形,直角三角形,等腰三角形,等边三角形)、四边形(分为不规则四边形,梯形【分为直角梯形和等腰梯形】,平行四边形,平行四边形又分:矩形,菱形,正方形)、五边形、六…… 注:正方形既是矩形也是特殊的菱形。

3.弓形(由直线和圆弧构成的图形,包括优弧弓,劣弧弓,抛物线弓等)。

4.多弧形(包括月牙形,谷粒形,太极形葫芦形等

几何图形的概念是什么?

生活中到处都有几何图形,我们能看见的一切都是由点,线,面等基本几何图形组成的。

几何源于西文西方的测地术,解决点线面体之间的关系。几何图形包括平面图形与立体图形。点、直线、线段、射线、三角形、四边形等为平面图形;长方体、圆球、圆锥等为立体图形。几何图形平面图形与立体图形,其实几何图形所有图形的总称。

几何图形有哪些?

基本的平面图形:点、线、角,三角形、四边形(长方形、正方形、平行四边形、菱形、梯形)、多边形、圆等等。

基本的立体图形:长方体、正方体、圆柱、圆锥、球,棱柱、棱伐、棱台、圆台、多面体等等。

扩展资料

应用

几何图形的应用非常广泛,无论在设计、绘画创作、数学研究中都需要借助几何图形进行。

数学定义、定理等用数学语言叙述起来很抽象,记住定理有一定难度。若在教学中恰当地借助几何图形,数形结合,使学习者对直观图形加深理解以掌握其定理。

几何图形包括什么和什么?

几何图形分为立体几何图形,平面几何图形。立体几何图形可以分为以下几类:

(1)柱体:包括圆柱和棱柱。

棱柱又可分为直棱柱和斜棱柱,按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积都等于底面面积乘以高,即V=SH;(4)截面体:包括棱台、圆台、斜截圆柱、斜截棱柱、斜截圆锥、球冠、球缺等。其表面积和体积一般都是根据图形加减解答。

平面几何图形可分为以下几类:

(1)圆形:包括正圆,椭圆,多焦点圆——卵圆。

(2)多边形:三角形、四边形、五边形等。

(3)弓形:优弧弓、劣弧弓、抛物线弓等。

(4)多弧形:月牙形、谷粒形、太极形、葫芦形等。扩展资料:几何图形,即从实物中抽象出的各种图形,可帮助人们有效的刻画错综复杂的世界。生活中到处都有几何图形,我们所看见的一切都是由点、线、面等基本几何图形组成的。几何源于西文西方的测地术,解决点线面体之间的关系。无穷尽的丰富变化使几何图案本身拥有无穷魅力。应用几何图形的应用非常广泛,无论在设计、绘画创作、数学研究中都需要借助几何图形进行。数学定义、定理等用数学语言叙述起来很抽象,记住定理有一定难度,因此帮助学生记住定义定理是教学中一个重要环节。

若在教学中恰当地借助几何图形,数形结合,使学生对直观图形加深理解以掌握其定理。

几何图形的概念?

答:几何图形包括平面图形与立体图形。点、直线、线段、射线、三角形、四边形等为平面图形;长方体、圆球、圆柱体、圆锥等为立体图形。

平面几何图形可分为以下几类:

(1)圆形:包括正圆,椭圆,多焦点圆——卵圆。

(2)多边形:三角形、四边形、五边形等。

(3)弓形:优弧弓、劣弧弓、抛物线弓等。

(4)弧形:月牙形、谷粒形、太极形、葫芦形等。

立体几何图形可以分为以下几类:(1)柱体:包括圆柱和棱柱。棱柱又可分为直棱柱和斜棱柱,按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积都等于底面面积乘以高,即V=SH;(2)锥体:包括圆锥体和棱锥体,棱锥分为三棱锥、四棱锥及N棱锥;棱锥体。

版权声明